Neutrosophic Similarity Score Based Weighted Histogram for Robust Mean-Shift Tracking
نویسندگان
چکیده
Visual object tracking is a critical task in computer vision. Challenging things always exist when an object needs to be tracked. For instance, background clutter is one of the most challenging problems. The mean-shift tracker is quite popular because of its efficiency and performance in a range of conditions. However, the challenge of background clutter also disturbs its performance. In this article, we propose a novel weighted histogram based on neutrosophic similarity score to help the mean-shift tracker discriminate the target from the background. Neutrosophic set (NS) is a new branch of philosophy for dealing with incomplete, indeterminate, and inconsistent information. In this paper, we utilize the single valued neutrosophic set (SVNS), which is a subclass of NS to improve the mean-shift tracker. First, two kinds of criteria are considered as the object feature similarity and the background feature similarity, and each bin of the weight histogram is represented in the SVNS domain via three membership functions T(Truth), I(indeterminacy), and F(Falsity). Second, the neutrosophic similarity score function is introduced to fuse those two criteria and to build the final weight histogram. Finally, a novel neutrosophic weighted mean-shift tracker is proposed. The proposed tracker is compared with several mean-shift based trackers on a dataset of 61 public sequences. The results revealed that our method outperforms other trackers, especially when confronting background clutter.
منابع مشابه
Using a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملPlayers Localizatio , Highlighti G a D Team Classificatio I Soccer Game Video
In this paper, a framework of player segmentation, tracking, highlighting and team classification in soccer game video is proposed. Main contributions consist of: 1) playfield modeling combining the Gaussian model with the dominant color extraction to segment the players/referees; 2) mean shift-based tracking with soft constraints from the foreground map to alleviate the shortcomings in handlin...
متن کاملاصلاح ردیاب انتقال متوسط برای ردگیری هدف با الگوی تابشی متغیر
The mean shift algorithm is one of the popular methods in visual tracking for non-rigid moving targets. Basically, it is able to locate repeatedly the central mode of a desirable target. Object representation in mean shift algorithm is based on its feature histogram within a non-oriented individual kernel mask. Truly, adjusting of the kernel scale is the most critical challenge in this method. ...
متن کاملConfidence-Based Dynamic Classifier Combination For Mean-Shift Tracking
We introduce a novel tracking technique which uses dynamic confidence-based fusion of two different information sources for robust and efficient tracking of visual objects. Mean-shift tracking is a popular and well known method used in object tracking problems. Originally, the algorithm uses a similarity measure which is optimized by shifting a search area to the center of a generated “weight i...
متن کاملRobust Mean Shift Tracking with Corrected Background-Weighted Histogram
The background-weighted histogram (BWH) algorithm proposed in [2] attempts to reduce the interference of background in target localization in mean shift tracking. However, in this paper we prove that the weights assigned to pixels in the target candidate region by BWH are proportional to those without background information, i.e. BWH does not introduce any new information because the mean shift...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information
دوره 8 شماره
صفحات -
تاریخ انتشار 2017